已知数列首项,公比为的等比数列,又,常数,数列满足,(1)、求证为等差数列;(2)、若是递减数列,求的最小值;(参考数据:)(3)、是否存在正整数,使重新排列后成等比数列,若存在,求的值,若不存在,说明理由。
某同学参加语、数、外三门课程的考试,设该同学语、数、外取得优秀成绩的概率分别为,m,n(m>n),设该同学三门课程都取得优秀成绩的概率为,都未取得优秀成绩的概率为,且不同课程是否取得优秀成绩相互独立. (1)求m,n; (2)设X为该同学取得优秀成绩的课程门数,求EX.
如图,已知四棱锥的底面是正方形,侧棱底面,,是的中点. (1)证明平面; (2)求二面角的余弦值.
已知等差数列满足:. (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和.
(本小题满分12分)如图,在平面直角坐标系中,点在单位圆上,,且. (1)若,求的值; (2)若也是单位圆上的点,且.过点分别做轴的垂线,垂足为,记的面积为,的面积为.设,求函数的最大值.
(本小题满分12分)已知,,且 (1)求函数的解析式; (2)当时,的最小值是,求此时函数的最大值,并求出函数取得最大值时自变量的值