(本小题满分14分)已知定义在上的函数,满足条件:①,②对非零实数,都有.(1)求函数的解析式;(2)设函数,直线分别与函数,交于、两点,(其中);设,为数列的前项和,求证:当时, .
(本题共12分) 一盒中放有的黑球和白球,其中黑球4个,白球5个. (Ⅰ)从盒中同时摸出两个球,求两球颜色恰好相同的概率; (Ⅱ)从盒中摸出一个球,放回后再摸出一个球,求两球颜色恰好不同的概率. (Ⅲ)若取到白球则停止摸球,求取到第三次时停止摸球的概率
设. (Ⅰ)判断函数在的单调性并证明; (Ⅱ)求在区间上的最小值。
已知函数与函数. (I)若的图象在点处有公共的切线,求实数的值; (II)设,求函数的极值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
(本小题共13分) 已知椭圆和直线L:="1," 椭圆的离心率,直线L与坐标原点的距离为。 (1)求椭圆的方程; (2)已知定点,若直线与椭圆相交于C、D两点,试判断是否存在值,使以CD为直径的圆过定点E?若存在求出这个值,若不存在说明理由。