(本小题满分12分)已知向量,函数.(Ⅰ)求函数的最小正周期;(Ⅱ)已知、、分别为内角、、的对边, 其中为锐角,,且,求和的面积.
已知函数,.(1)讨论在内和在内的零点情况.(2)设是在内的一个零点,求在上的最值.(3)证明对恒有.[来
椭圆:的左顶点为,直线交椭圆于两点(上下),动点和定点都在椭圆上.(1)求椭圆方程及四边形的面积.(2)若四边形为梯形,求点的坐标.(3)若为实数,,求的最大值.
如图,已知平面平面,且四边形为矩形,四边形为直角梯形,,,,,.(1)作出这个几何体的三视图(不要求写作法).(2)设是直线上的动点,判断并证明直线与直线的位置关系.(3) 求三棱锥的体积.[来.
执行如图所描述的算法程序,记输出的一列的值依次为,其中且.(1)若输入,写出全部输出结果.(2)若输入,记,求与的关系().
小区统计部门随机抽查了区内名网友4月1日这天的网购情况,得到如下数据统计表(图(1)).网购金额超过千元的顾客被定义为“网购红人”,网购金额不超过千元的顾客被定义为“非网购红人”.已知“非网购红人”与“网购红人”人数比恰为.(1)确定的值,并补全频率分布直方图(图(2)).(2)为进一步了解这名网友的购物体验,从“非网购红人”和“网购红人”中用分层抽样的方法确定人,若需从这人中随机选取人进行问卷调查,设为选取的人中“网购红人”的人数,求的分布列和数学期望.