((本小题满分12分)已知椭圆的中心为坐标原点O,焦点在x轴上,椭圆短半轴长为1,动点 在直线上。(1)求椭圆的标准方程(2)求以OM为直径且被直线截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
如图,边长为2的正方形绕边所在直线旋转一定的角度(小于)到的位置. (1)若,求三棱锥的外接球的表面积; (2)若为线段上异于,的点,,设直线与平面所成角为,当时,求的取值范围.
如图,四棱锥中,底面是平行四边形,平面,垂足为,在线段上,,,,是的中点,四面体的体积为. (1)求异面直线与所成角的余弦值; (2)棱上是否存在一点,使,若存在,求的值,若不存在,请说明理由.
如图,四棱锥中,底面为平行四边形,,,底面. (1)证明:平面平面; (2)若二面角为,求与平面所成的正弦值.
如图,在七面体中,四边形是边长为2的正方形,平面,平面,且,,与交于点,点在上,且 (1)求证:平面; (2)求七面体的体积.
已知:定义在R上的函数,对于任意实数a, b都满足,且,网当. (Ⅰ)求的值; (Ⅱ)证明在上是增函数; (Ⅲ)求不等式的解集.