((本小题满分12分)已知椭圆的中心为坐标原点O,焦点在x轴上,椭圆短半轴长为1,动点 在直线上。(1)求椭圆的标准方程(2)求以OM为直径且被直线截得的弦长为2的圆的方程;(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值。
设是一次函数,且,求的解析式。
集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(Ⅰ)若A=,求a的值;(Ⅱ)若A∩B,A∩C=,求a的值.
已知集合,求(1)当时,中至多只有一个元素,求的取值范围; (2)当时,中至少有一个元素,求的取值范围;(3)当、满足什么条件时,集合为非空集合。
已知集合,,(1)若,求;(2)若,求实数a的取值范围.
已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,右顶点为,设点.(Ⅰ)求该椭圆的标准方程;(Ⅱ)过原点的直线交椭圆于点,求面积的最大值.