(本题12分)已知函数(1)求的定义域;(2)求的值域。
(本小题满分13分)设数列{an}满足a1=t,a2=t2,前n项和为Sn,且Sn+2-(t+1)Sn+1+tSn=0(n∈N*).(1)证明数列{an}为等比数列,并求{an}的通项公式;(2)当<t<2时,比较2n+2-n与tn+t-n的大小;(3)若<t<2,bn=,求证:++…+<2n-.
(本小题满分12分)某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,C(x)=x2+10x(万元);当年产量不小于80千件时,C(x)=51x+-1450(万元).通过市场分析,若每件售价为500元时,该厂当年生产的该产品能全部销售完.(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一产品的生产中所获利润最大,最大利润是多少?
(本小题满分12分)已知数列{an}的前n项和Sn=2n2-2n,数列{bn}的前n项和Tn=3-bn.①求数列{an}和{bn}的通项公式;②设cn=an·bn,求数列{cn}的前n项和Rn的表达式.
(本小题满分12分)已知△ABC的内角A,B,C所对的边分别为a,b,c,且a=2,cos2B=-.(1)若b=4,求sinA的值;(2)若△ABC的面积S△ABC=4,求b,c的值.
(本小题满分12分)已知不等式ax2-3x+6>4的解集为{x|x<1或x>b},(1)求a,b;(2)解不等式ax2-(ac+b)x+bc<0.