(本小题满分14分)已知椭圆的左右焦点分别为,,离心率为,Q是椭圆外动点,且等于椭圆长轴的长,点P是线段与椭圆的交点,点T是线段上异于的一点,且。(1)求椭圆的方程;(2)设直线经过与椭圆交于M,N两点,斜率为k,若为钝角,求k的取值范围。
在△ABC中,设A、B、C的对边分别为a、b、c,向量m=(cosA,sinA),n=(-sinA,cosA),若|m+n|=2. (1)求角A的大小; (2)若b=4,且c=a,求△ABC的面积.
已知向量a=(cosx,sinx),|b|=1,且a与b满足|ka+b|=|a-kb| (k>0). (1)试用k表示a·b,并求a·b的最小值; (2)若0≤x≤,b=,求a·b的最大值及相应的x值.
设a=(-1,1),b=(4,3),c=(5,-2), (1)求证a与b不共线,并求a与b的夹角的余弦值; (2)求c在a方向上的投影; (3)求1和2,使c=1a+2b.
在海岸A处,发现北偏东45°方向,距离A(-1)n mile的B处有一艘走私船,在A处北偏西75°的方向,距离A 2 n mile的C处的缉私船奉命以10n mile/h的速度追截走私船.此时,走私船正以10 n mile/h的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?
如图所示,扇形AOB,圆心角AOB等于60°,半径为2,在弧AB上有一动点P,过P引平行于OB的直线和OA交于点C,设∠AOP=,求△POC面积的最大值及此时的值.