(本小题满分12分)已知函数,其中,为参数,且。(1)当时,求的单调区间;(2)若不等式对任意的恒成立,求的取值范围。
在平面直角坐标系中,已知直线的参数方程是(为参数);以 为极点,轴正半轴为极轴的极坐标系中,圆的极坐标方程为.由直线上的点向圆引切线,求切线长的最小值.
设矩阵(其中),若曲线在矩阵所对应的变换作用下得到曲线,求的值.
如图,点为锐角的内切圆圆心,过点作直线的垂线,垂足为,圆与边相切于点.若,求的度数.
已知数列满足,,,是数列的前项和.(1)若数列为等差数列.(ⅰ)求数列的通项;(ⅱ)若数列满足,数列满足,试比较数列 前项和与前项和的大小;(2)若对任意,恒成立,求实数的取值范围.
已知函数(为常数),其图象是曲线. (1)当时,求函数的单调减区间; (2)设函数的导函数为,若存在唯一的实数,使得与同时成立,求实数的取值范围; (3)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为.问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.