(本小题满分12分)现有语文书6本,数学书5本,英语书4本,从中任取3本。(1)求取出的3本书恰好每学科1本的概率;(2)求取出的3本书中至少有1本英语书的概率;(3)求取出的3本书为两种学科的概率。
(本题满分13分) 已知椭圆()过点(0,2),离心率. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆相交于两点,求.
(本题满分12分) 已知函数,其中.定义数列如下:,. (1)当时,求的值; (2)是否存在实数m,使构成公差不为0的等差数列?若存在,请求出实数的值,若不存在,请说明理由;
(本题满分12分) 在△ABC中,a2+c2=2b2,其中a,b,c分别为角A,B,C所对的边长. (1)求证:B≤; (2)若,且A为钝角,求A.
(本题满分12分)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。 (1)求证:CE⊥平面PAD; (11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
(本题满分12分)某高校从参加今年自主招生考试的学生中随机抽取容量为50的学生成绩样本,得频率分布表如下:
(1)写出表中①②位置的数据; (2)为了选拔出更优秀的学生,高校决定在第三、四、五组中用分层抽样法抽取6名学生进行第二轮考核,分别求第三、四、五各组参加考核人数; (3)在(2)的前提下,高校决定在这6名学生中录取2名学生,求2人中至少有1名是第四组的概率.