(本小题满分12分)如图,在四棱锥P-ABCD中,底面为正文形,PA平面ABCD,且PA=AD,E为棱PC上的一点,PD平面ABE(I)求证:E为PC的中点(II)若N为CD中点,M为AB上的动点,当直线MN与平面ABE所成的角最大时,求二面角C-EM—N的大小
(本题共13分)某射击比赛,开始时在距目标米处射击,如果命中记分,且停止射击;若第一次射击未命中,可以进行第二次射击,但目标已在米处,这时命中记分,且停止射击;若第二次仍未命中还可以进行第三次射击,但此时目标已在米处,若第三次命中则记分,并停止射击;若三次都未命中,则记分.已知射手的命中率与目标距离(米)的关系为,且在100米处击中目标的概率为,假设各次射击相互独立.(Ⅰ)求这名射手在射击比赛中命中目标的概率;(Ⅱ)求这名射手在比赛中得分的分布列与数学期望.
(本题共13分)设函数,若曲线在点处的切线斜率为.(Ⅰ)求的值;(Ⅱ)求在上的单调区间与极值.
设函数(其中).(1)当时,求函数的单调区间;(2)当时,求函数在上的最大值.
已知函数在处的切线方程为,为的导函数,(,为自然对数的底)(1)求的值;(2)若,使成立,求的取值范围.
平面内给定三个向量(1)求满足的实数、;(2)设满足且,求.