(本小题满分14分)已知椭圆C的长轴长与短轴长之比为,焦点坐标分别为F1(-2,0),F2(2,0),O是坐标原点.(1)求椭圆C的标准方程;(2)已知A(-3,0),B(3,0)P是椭圆C上异于A、B的任意一点,直线AP、BP分别交于y轴于M、N两点,求的值;(3)在(2)的条件下,若G(s,o)、H(k,o)且,(s<k),分别以线段OG、OH为边作两个正方形,求这两上正方形的面积和的最小值,并求出取得最小值时G、H两点的坐标.
已知椭圆C的焦点分别为和,长轴长为6,设直线交椭圆C于A、B两点,求线段AB的中点坐标
已知命题p:方程x2+mx+1=0有两个不相等的实根;q:不等式4x2+4(m–2)x+1>0的解集为R;若p或q为真,p且q为假,求实数m的取值范围。
已知两点、,点为坐标平面内的动点,满足.(1)求动点的轨迹方程;(2)若点是动点的轨迹上的一点,是轴上的一动点,试讨论直线与圆的位置关系.
已知数列的前项和为,且,;数列中,点在直线上.(1)求数列和的通项公式;(2)设数列的前和为,求;
某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.但国家每天分配给该厂的煤、电有限, 每天供煤至多56吨,供电至多450千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?