(本题满分12分.)数列中{an},a1=8,a4=2,且满足an+2= 2an+1- an,(1)求数列{an}的通项公式;(2)设Sn=,求Sn
本小题满分12分)已知函数,三个内角的对边分别为. (Ⅰ)求的单调递增区间及对称轴的方程;(Ⅱ)若,,求角的大小.
设函数.(1)若函数在处有极值,求函数的最大值;(2)是否存在实数,使得关于的不等式在上恒成立?若存在,求出的取值范围;若不存在,说明理由;(3)记,证明:不等式.
(本小题满分13分)已知椭圆C:的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线相切(Ⅰ)求椭圆C的标准方程(Ⅱ)若直线L:与椭圆C相交于A、B两点,且,求证:的面积为定值
已知数列满足:,.数列的前项和为,.(Ⅰ)求数列,的通项公式;(Ⅱ)设,.求数列的前项和.
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.(1)证明:BN⊥平面C1B1N;(2)求二面角的正弦值