(本题满分12分.)数列中{an},a1=8,a4=2,且满足an+2= 2an+1- an,(1)求数列{an}的通项公式;(2)设Sn=,求Sn
已知函数. (1)当时,求的单调减区间; (2)若方程恰好有一个正根和一个负根,求实数的最大值.
在平面直角坐标系xOy中,已知椭圆C:的离心率为,且过点,过椭圆的左顶点A作直线轴,点M为直线上的动点,点B为椭圆右顶点,直线BM交椭圆C于P. (1)求椭圆C的方程; (2)求证:; (3)试问是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.
如图,有一段河流,河的一侧是以O为圆心,半径为米的扇形区域OCD,河的另一侧是一段笔直的河岸l,岸边有一烟囱AB(不计B离河岸的距离),且OB的连线恰好与河岸l垂直,设OB与圆弧的交点为E.经测量,扇形区域和河岸处于同一水平面,在点C,点O和点E处测得烟囱AB的仰角分别为,和. (1)求烟囱AB的高度; (2)如果要在CE间修一条直路,求CE的长.
如图,四边形为矩形,四边形为菱形,且平面⊥平面,D,E分别为边,的中点. (1)求证:⊥平面; (2)求证:DE∥平面.
若存在个不同的正整数,对任意,都有,则称这个不同的正整数为“个好数”. (1)请分别对,构造一组“好数”; (2)证明:对任意正整数,均存在“个好数”.