(本小题12分)A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为。(Ⅰ)求一个试验组为甲类组的概率;(Ⅱ) 观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。
(本小题满分12分)如图,四棱锥S—ABCD中,底面ABCD是菱形,其对角线的交点为O,且SA=SC,SA⊥BD (1)求证:SO⊥平面ABCD; (2)设∠BAD=60°,AB=SD=2,P是侧棱SD上的一点,且SB∥平面APC,求三棱锥A—PCD的体积.
(本小题满分12分)直线l的方程为(a+1)x+y+2-a=0(a∈R). (1)若l在两坐标轴上的截距相等,求a的值; (2)若l不经过第二象限,求实数a的取值范围.
(本小题满分12分)已知圆C:(x-1)2+y2=9内有一点P(2,2),过点P作直线l交圆C于A、B两点. (1)当直线l过圆心C时,求直线l的方程; (2)当直线l的倾斜角为45°时,求弦AB的长.
(本小题满分12分)如图所示,正方体ABCD-A1B1C1D1中,P、Q分别是AD1、BD上的点,且AP=BQ,求证:PQ∥平面DCC1D1.
(本小题满分12分)如图所示,已知A(1,3),B(-1,-1),C(2,1).求△ABC的BC边上的高所在的直线方程.