在平面直角坐标系xOy中,反比例函数的图象与抛物线交于点A(3, n). (1)求n的值及抛物线的解析式;(2) 过点A作直线BC,交x轴于点B,交反比例函数()的图象于点C,且AC=2AB,求B、C两点的坐标; (3)在(2)的条件下,若点P是抛物线对称轴上的一点,且点P到x轴和直线BC的距离相等,求点P的坐标.
已知:如图1,在锐角 ΔABC 中, AB = c , BC = a , AC = b , AD ⊥ BC 于 D .
在 Rt Δ ABD 中, sin ∠ B = AD c ,则 AD = c sin ∠ B ;
在 Rt Δ ACD 中, sin ∠ C = ,则 AD = ;
所以, c sin ∠ B = b sin ∠ C ,即, b sin B = c sin C ,
进一步即得正弦定理: a sin A = b sin B = c sin C (此定理适合任意锐角三角形).
参照利用正弦定理解答下题:
如图2,在 ΔABC 中, ∠ B = 75 ° , ∠ C = 45 ° , BC = 2 ,求 AB 的长.
红旗连锁超市花2000购进一批糖果,按 80 % 的利润定价无人购买,决定降价出售,但仍无人购买.结果又一次降价后才售完,但仍盈利 45 . 8 % ,两次降价的百分率相同,问每次降价的百分率是多少?
如图,四边形 ABCD 是平行四边形,延长 BA 至 E ,延长 DC 至 F ,使得 AE = CF ,连接 EF 交 AD 于 G ,交 BC 于 H .求证: ΔAEG ≅ ΔCFH .
如图,抛物线 y = x 2 + bx + c 与 x 轴交于 A 、 B 两点, B 点坐标为 ( 3 , 0 ) ,与 y 轴交于点 C ( 0 , − 3 )
(1)求抛物线的解析式;
(2)点 P 在抛物线位于第四象限的部分上运动,当四边形 ABPC 的面积最大时,求点 P 的坐标和四边形 ABPC 的最大面积.
(3)直线 l 经过 A 、 C 两点,点 Q 在抛物线位于 y 轴左侧的部分上运动,直线 m 经过点 B 和点 Q ,是否存在直线 m ,使得直线 l 、 m 与 x 轴围成的三角形和直线 l 、 m 与 y 轴围成的三角形相似?若存在,求出直线 m 的解析式,若不存在,请说明理由.
如图,在 ΔAOB 中, ∠ AOB 为直角, OA = 6 , OB = 8 ,半径为2的动圆圆心 Q 从点 O 出发,沿着 OA 方向以1个单位长度 / 秒的速度匀速运动,同时动点 P 从点 A 出发,沿着 AB 方向也以1个单位长度 / 秒的速度匀速运动,设运动时间为 t 秒 ( 0 < t ⩽ 5 ) 以 P 为圆心, PA 长为半径的 ⊙ P 与 AB 、 OA 的另一个交点分别为 C 、 D ,连接 CD 、 QC .
(1)当 t 为何值时,点 Q 与点 D 重合?
(2)当 ⊙ Q 经过点 A 时,求 ⊙ P 被 OB 截得的弦长.
(3)若 ⊙ P 与线段 QC 只有一个公共点,求 t 的取值范围.