如图,在某建筑物AC上,挂着宣传条幅BC,小明站在点F处,看条幅顶端B,测得的仰角为,再往条幅方向前行20米到达点E处,看条幅顶端B,测得的仰角为,若小明的身高约1.7米,求宣传条幅BC的长(结果精确到1米)
如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)请判断AB与CD的位置关系并说明理由;(2)如图2,当∠E=90°且AB与CD的位置关系保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并说明理由;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点且AB与CD的位置关系保持不变,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.
巍山镇中为丰富学生的校园生活,准备从体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球、一个篮球各需多少元?(2)根据巍山镇中的实际情况,需从体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不低于5600但不超过5720元,可以有哪几种购买方案?
繁昌四中为了了解学生对三种国庆活动方案的意见,对全体学生进行了一次抽样调查(被调查学生至多赞成其中的一种方案),现将调查结果绘制成如图两幅不完整的统计图,请根据图中提供的信息解答下列问题(1)这次共调查了多少名学生?扇形统计图中方案1所对应的圆心角的度数为多少度?(2)请把条形统计图补充完整;(3)已知繁昌四中约有1500名学生,试估计该校赞成方案1的学生约有多少人?
△ABC与△A′B′C′在平面直角坐标系中的位置如图. (1)分别写出下列各点的坐标:A′ ; B′ ;C′ ; (2)说明△A′B′C′由△ABC经过怎样的平移得到? . (3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为 ; (4)求△ABC的面积.
解不等式组,并把解集在数轴上表示出来.