(本小题满分12分)某港口O要将一件重要物品用小艇送到一艘正在航行的轮船上,在小艇出发时,轮船位于港口O北偏西30°且与该港口相距20海里的处,并正以30海里/小时的航行速度沿正东方向匀速行驶。假设该小艇沿直线方向以海里/小时的航行速度匀速行驶,经过小时与轮船相遇。(Ⅰ)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(Ⅱ)为保证小艇在30分钟内(含30分钟)能与轮船相遇,试确定小艇航行速度的最小值;
已知函数(I)求的单调区间;(II)若函数的图象上存在一点为切点的切线的斜率成立,求实数a的最大值
如图,某学校要用鲜花布置花圃中ABCDE五个不同区域,要求同一区域上用一种颜色的鲜花,相邻区域使用不同颜色的鲜花,现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择。(I)求恰有两个区域用红色鲜花的概率;(II)记ξ为花圃中用红色鲜花布置区域个数,求随机变量ξ的分布列及其数学期望Eξ.
如图,在△ABC中;角A、B、C所对的边分别是a、b、c,且,O为△ABC的外心。(I)求△ABC的面积;(II)求
已知数列满足:①求数列的通项公式;②证明;③设,且,证明
已知不垂直于x轴的动直线l交抛物线于A、B两点,若A,B两点满足AQP=BQP,其中Q(-4,0),原点O为PQ的中点.①求证A,P,B三点共线;②当m=2时,是否存在垂直于-轴的直线,使得被以为直径的圆所截得的弦长为定值,如果存在,求出的方程,如果不存在,请说明理由