,,求(1)(2)
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为,且每处理一吨二氧化碳可得到可利用的化工产品的价值为元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低? (2)该单位每月是否能获利?如果能获利,求出最大利润;如果不获利,则国家至少需要每月补贴多少元才能使该单位不亏损?
已知是定义在上的奇函数,当时,函数的解析式为. (1)试求的值; (2)写出在上的解析式; (3)求在上的最大值.
已知是定义在上的增函数,,. (1)求证:; (2)求的值; (3)若,求的取值范围.
已知集合,集合. (1)若,求和; (2)若,求实数的取值范围.
(本小题满分14分)在数列。 (1)求证:数列是等差数列,并求数列的通项公式; (2)设,求数列的前项和。