请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分。(本小题满分10分)选修4-1:几何证明选讲在中,AB=AC,过点A的直线与其外接圆交于点P,交BC延长线于点D。(1)求证: ;(2)若AC=3,求的值。
集合,. (1)求集合和B; (2)若,求的取值范围
已知 (1)求的周期,并求时的单调增区间. (2)在△ABC中,分别是角A,B,C所对的边,若,且,求的最大值.
已知抛物线的方程为,直线与抛物线相交 于两点,点在抛物线上.(Ⅰ)若求证:直线 的斜率为定值; (Ⅱ)若直线的斜率为且点到 直线的距离的和为,试判断的形状,并证明你的结论.
已知函数在处取得极大值. (Ⅰ)求在区间上的最大值; (Ⅱ)若过点可作曲线的切线有三条,求实数的取值范围.
对于给定数列,如果存在实常数,使得对于任意都成立,我们称数列是 “类数列”. (Ⅰ)已知数列是 “类数列”且,求它对应的实常数的值; (Ⅱ)若数列满足,,求数列的通项公式.并判断是否为“类数列”,说明理由.