已知点P(-1,)是椭圆E:()上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.(1)求椭圆E的方程;(2)设A、B是椭圆E上两个动点,(0<λ<4,且λ≠2).求证:直线AB的斜率等于椭圆E的离心率;(3)在(2)的条件下,当△PAB面积取得最大值时,求λ的值.
已知为实数,求关于的不等式:的解集.
如图,四棱锥P—ABCD的底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.(Ⅰ)证明PA//平面BDE;(Ⅱ)求二面角B—DE—C的平面角的余弦值;(Ⅲ)在棱PB上是否存在点F,使PB⊥平面DEF?证明你的结论.
已知函数(1)判断函数的奇偶性;(2)若在区间是增函数,求实数的取值范围。
设函数其中实数.(1)若,求函数的单调区间;(2)当函数与的图象只有一个公共点且存在最小值时,记的最小值为,求的值域;(3)若与在区间内均为增函数,求的取值范围.
据调查,某地区100万从事传统农业的农民,人均收入3000元,为了增加农民的收入,当地政府积极引进资本,建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作,据估计,如果有x(x>0)万人进企业工作,那么剩下从事传统农业的农民的人均收入有望提高2x%,而进入企业工作的农民的人均收入为3000a元(a>0)。(1)在建立加工企业后,要使从事传统农业的农民的年总收入不低于加工企业建立前的农民的年总收入,试求x的取值范围;(2)在(I)的条件下,当地政府应该如何引导农民(即x多大时),能使这100万农民的人均年收入达到最大。