(本小题满分13分)已知定义在R上的函数满足:①对任意的,都有;②当时,有.(1)利用奇偶性的定义,判断的奇偶性;(2)利用单调性的定义,判断的单调性;(3)若关于x的不等式在上有解,求实数的取值范围.
如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点. (Ⅰ)求证:平面; (Ⅱ)求锐二面角的余弦值.
正项数列的前n项和为,且. (Ⅰ)证明数列为等差数列并求其通项公式; (Ⅱ)设,数列的前项和为,证明:
解关于的不等式
如图,已知矩形所在平面外一点,平面,分别是的中点,. (1)求证:平面 (2)若,求直线与平面所成角的正弦值.
已知中,角A,B,C,所对的边分别是,且; (1)求 (2)若,求面积的最大值.