(本小题满分14分)设是椭圆上的两点,点是线段的中点,线段的垂直平分线与椭圆交于两点.(Ⅰ)当时,过点P(0,1)且倾斜角为的直线与椭圆相交于E、F两点,求长;(Ⅱ)确定的取值范围,并求直线CD的方程.
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3. (1)求此抛物线的方程; (2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
如图,在四棱锥中,底面是矩形,平面,,,依次是的中点. (1)求证:; (2)求直线与平面所成角的正弦值.
如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为. (1)求所在的直线方程; (2)求出长方形的外接圆的方程.
已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,且为假命题,求实数的取值范围.
已知椭圆的右焦点为,为上顶点,为坐标原点,若△的面积为,且椭圆的离心率为. (1)求椭圆的方程; (2)是否存在直线交椭圆于,两点, 且使点为△的垂心?若存在,求出直线的方程;若不存在,请说明理由.