(12分) 设集合, ,若,求实数m的取值范围。
(本小题满分12分)给定椭圆:,称圆心在原点,半径为的圆是椭圆的“准圆”。若椭圆的一个焦点为,其短轴上的一个端点到的距离为.(Ⅰ)求椭圆的方程和其“准圆”方程.(Ⅱ)点是椭圆的“准圆”上的一个动点,过动点作直线使得与椭圆都只有一个交点,且分别交其“准圆”于点;(1)当为“准圆”与轴正半轴的交点时,求的方程.(2)求证:为定值.
(本小题满分12分)已知单调递增的等比数列{}满足:,且是 的等差中项.(1)求数列{an}的通项公式.(2)若=,sn为数列的前项和,求证:sn .
(本小题满分12分)如图,已知矩形所在平面与矩形所在平面垂直,,=1,,是线段的中点.(1)求证:平面;(2)求二面角的正弦值;(3)求多面体的体积.
(本小题满分12分)某校为宣传县教育局提出的“教育发展,我的责任”教育实践活动,要举行一次以“我为教育发展做什么”为主题的的演讲比赛,比赛分为初赛、复赛、决赛三个阶段进行,已知某选手通过初赛、复赛、决赛的概率分别是,且各阶段通过与否相互独立.(I)求该选手在复赛阶段被淘汰的概率;(II)设该选手在比赛中比赛的次数为,求的分布列、数学期望和方差.
(本题12分)已知圆C的圆心为C(m,0),(m<3),半径为,圆C与椭圆E: 有一个公共点A(3,1),分别是椭圆的左、右焦点;(Ⅰ)求圆C的标准方程;(Ⅱ)若点P的坐标为(4,4),试探究斜率为k的直线与圆C能否相切,若能,求出椭圆E和直线的方程,若不能,请说明理由。