(本小题满分12分)如图,平面ABCD⊥平面PAD,△APD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,其中BCAD,∠BAD=90°,AD="2" BC,且AB=BC=PD=2,O是AD的中点,E,F分别是PC,OD的中点. (Ⅰ)求证:EF平面PBO;(Ⅱ)求二面角A- PF - E的正切值.
如图,某旅游区拟在公路(南北向)旁开发一个抛物线形的人工湖,湖沿岸上每一点到公路的距离与到处的距离相等,并在湖中建造一个三角形的游乐区,三个顶点都在湖沿岸上,直线通道经过处.经测算,在公路正东方向米处,在的正西方向米处,现以点为坐标原点,以线段所在直线为轴建立平面直角坐标系, (1)求抛物线的方程 (2)试确定直线通道的位置,使得三角形游乐区的面积最小,并求出最小值
某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响.求移栽的4株大树中: (1)两种大树各成活1株的概率; (2)成活的株数的分布列与期望.
设函数的最大值为,最小正周期为 (1)求、; (2)若有10个互不相等的正数满足 求的值.
已知函数在与时都取得极值 (1)求的值与函数的单调区间 (2)若对,不等式恒成立,求的取值范围。
已知顶点在坐标原点,焦点在轴上的抛物线被直线截得的弦长为,求抛物线的方程。