(本小题满分12分)如图,平面ABCD⊥平面PAD,△APD是直角三角形,∠APD=90°,四边形ABCD是直角梯形,其中BCAD,∠BAD=90°,AD="2" BC,且AB=BC=PD=2,O是AD的中点,E,F分别是PC,OD的中点. (Ⅰ)求证:EF平面PBO;(Ⅱ)求二面角A- PF - E的正切值.
是否存在锐角,使得(1)同时成立?若存在,求出和的值;若不存在,说明理由。
三角形中,, (1)试用表示 (2)设过的直线交于,交于,且,求证:
已知三角形的三边和面积S满足,求S的最大值。
数列满足其中 (1)求 (2)是否存在一个实数,使成等差数列?若存在,求出的值,若不存在,说明理由。
已知函数对于任意正实数都有,且时,。 (1)证明 (2)求证:在上为减函数。