某射手每次射击击中目标的概率是,且各次射击的结果互不影响。(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记为射手射击3次后的总的分数,求的分布列。
如图所示,直三棱柱中,是线段的中点,,。 (Ⅰ)证明:面; (Ⅱ)求面与面所成的锐二面角的余弦值。
已知双曲线:的焦距为,且经过点。 (Ⅰ)求双曲线的方程和其渐近线方程; (Ⅱ)若直线与双曲线有且只有一个公共点,求所有满足条件的的取值。
命题:;命题:。 若为假命题,为假命题,则求的取值范围。
已知定义域为的奇函数. (1)解不等式; (2)对任意,总有,求实数的取值范围.
已知,, (1)求函数的单调增区间; (2)当时,求函数的值域.