(本小题满分12分)设函数。(Ⅰ)求函数的最大值和最小正周期;(Ⅱ)设A,B,C为三个内角,若,且C为锐角,求。
如图,已知四棱锥, ,,平面,为中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面.
已知函数,其中.(Ⅰ)当时,求不等式的解集;(Ⅱ)已知关于的不等式的解集为,求的值 .
在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系.圆,直线的极坐标方程分别为.(Ⅰ)求与交点的极坐标;(Ⅱ)设为的圆心,为与交点连线的中点.已知直线的参数方程为(为参数),求的值.
如图,是圆的直径,直线与圆相切于,垂直于,垂直于,垂直于,垂直于,连接,证明:(Ⅰ);(Ⅱ).
已知函数.(Ⅰ)当时,求函数的点处的切线方程;(Ⅱ)设,若函数在定义域内存在两个零点,求实数的取值范围.