数列{an}满足Sn=2n-an,n∈N,先计算前4项后猜想an,并用数学归纳法证明
已知方向向量为的直线过点和椭圆C: 的焦点,且椭圆C的中心关于直线的对称点在椭圆的右准线上, 直线过点交椭圆C于M、N两点. (1)求椭圆C的方程; (2)若设是椭圆C的右焦点,若,求直线的方程; (3)设(为坐标原点),当直线绕点转动时,求的取值范围.
已知圆C满足:①截Y轴所得弦长为2,②被X轴分成两段弧,其弧长的比为3∶1,③圆心到直线:的距离为.(1)求圆C的方程;(2)过点的直线能否与圆C相切,若相切,求切线方程,若不相切,说明理由.
已知椭圆C:,直线过点P交椭圆C于A、B两点.(1)若P是AB中点,求直线的方程及弦AB的长;(2)求弦AB中点M的轨迹方程.
已知函数,.(1)求函数的最小正周期和单调增区间;(2)说明的图象可以由函数的图象经过怎样的变换得到.
设函数,若且.求证:.