.(本小题满分14分)已知数列的相邻两项是关于的方程 的两实根,且,记数列的前项和为.(1)求;(2)求证:数列是等比数列;(3)设,问是否存在常数,使得对都成立,若存在,求出的取值范围,若不存在,请说明理由.
已知椭圆:的离心率为,过椭圆的右焦点F且斜率为1的直线交椭圆于两点,为弦的中点,为坐标原点。 (1)求直线的斜率; (2)对于椭圆上的任意一点,试证:总存在,使得等式成立.
已知函数. (1)求的单调区间; (2)设,若对任意,总存在,使得,求实数的取值范围.
在如图所示的空间几何体中,平面平面=,和平面所成的角为,且点在平面上的射影落在的平分线上. (I)求证:平面 (II)求二面角的余弦值
某车站每天上午发出两班客车(每班客车只有一辆车)。第一班客车在8∶00,8∶20,8∶40这三个时刻随机发出,且在8∶00发出的概率为,8∶20发出的概率为,8∶40发出的概率为;第二班客车在9∶00,9∶20,9∶40这三个时刻随机发出,且在9∶00发出的概率为,9∶20发出的概率为,9∶40发出的概率为.两班客车发出时刻是相互独立的,一位旅客预计8∶10到站.求: (1)请预测旅客乘到第一班客车的概率; (2)求旅客候车时间的分布列和数学期望。
在中,角的对边分别为,满足 (1)求角的大小; (2)若,求的面积.