(本小题满分12分)如图所示,四棱锥中,底面为正方形,平面,,,,分别为、、的中点.(1)求证:;;(2)求三棱锥的体积.
(本小题满分14分)在ABC中角A,B,C的对边分别为a,b,c,且满足(2a-c)cosB=bcosC(1)求角B的大小;(2设向量m= (sinA,cos2A),n=(k,1),且mn>1恒成立,求k的取值范围.
已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时的解析式为f(x)=-(a∈R).(1)写出f(x)在(0,1]上的解析式;(2)求f(x)在(0,1]上的最大值.
已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值
设函数f(x)=x2+|x-2|-1,x∈R.(1)判断函数f(x)的奇偶性;(2)求函数f(x)的最小值
设二次函数f(x)=x2+ax+a,方程f(x)-x=0的两根x1和x2满足0<x1<x2<1.(1)求实数a的取值范围;(2)试比较f(0)·f(1)-f(0)与的大小,并说明理由