一种填数字彩票2元一张,购买者在彩票上依次填上0~9中的两个数字(允许重复),中奖规则如下:如果购买者所填的两个数字依次与开奖的四个有序数字分别对应相等,则中一等奖10元;如果购买者所填的两个数字中,只有第二个数字与开奖的第二个数字相等,则中二等奖2元,其他情况均不中奖。⑴小明和小辉在没有商量的情况下各买了一张这种彩票,求他俩都中一等奖的概率;⑵求购买一张这种彩票能够中奖的概率;⑶设购买一张这种彩票的收益为随机变量§,求§的数学期望。
动点与定点的距离和它到直线的距离之比是常数,记点的轨迹为曲线. (I)求曲线的方程; (II)设直线与曲线交于两点,为坐标原点,求面积的最大值.
如图,在直三棱柱(即侧棱与底面垂直的三棱柱)中,,为的中点 (I)求证:平面平面; (II)求到平面的距离.
某中学举行了一次“环保知识竞赛”, 全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题: 频率分布表
频率分布直方图 (Ⅰ)写出的值; (Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.求所抽取的2名同学中至少有1名同学来自第5组的概率;
设数列满足: (I)证明数列为等比数列,并求出数列的通项公式; (II)若,求数列的前项和.
已知函数. (Ⅰ)请写出函数在每段区间上的解析式,并在图中的直角坐标系中作出函数的图象; (II)若不等式对任意的实数恒成立,求实数的取值范围.