(本小题满分12分)设函数. (Ⅰ)求的最小值;(Ⅱ)若对恒成立,求实数的取值范围.
(本小题满分12分)已知双曲线的离心率为,右准线方程为(Ⅰ)求双曲线的方程;(Ⅱ)设直线是圆上动点处的切线,与双曲线交于不同的两点,证明的大小为定值.
((本小题满分13分)已知函数,存在实数满足下列条件:①;②;③(1)证明:;(2)求b的取值范围.
(本小题满分13分)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x-2y=0的距离为,求该圆的方程.
(本小题满分13分)已知且,求:(1)的最小值; (2)若直线与轴、轴分别交于、,求(O为坐标原点)面积的最小值.
(本小题满分10分)选修4一l:几何证明选讲如图,已知AP是圆O的切线,P为切点,AC是圆O的割线,与圆O交于B,C两点,圆心O在的内部,点M是BC的中点.(Ⅰ)证明A,P,O,M四点共圆;(Ⅱ)求的大小。