(本小题满分12分)设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点。(Ⅰ)求椭圆C1的方程; (Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值。
(本小题满分10分) 在△ABC中,角A、B、C对边分别是,且满足. (1)求角A的大小; (2)求的最大值,并求取得最大值时角B、C的大小.
选修4-5:不等式选讲 已知且,若恒成立, (Ⅰ)求的最小值; (Ⅱ)若对任意的恒成立,求实数的取值范围.
选修4-4:坐标系与参数方程 (Ⅰ)求直线(为参数)的倾斜角的大小. (Ⅱ)在极坐标系中,已知点,是曲线上任意一点,求的面积的最小值.
选修4-2:矩阵与变换已知矩阵,向量, (Ⅰ)求矩阵A的特征值和对应的特征向量; (Ⅱ)求向量,使得.
.已知函数 (Ⅰ)当时,求的值域 (Ⅱ)设,若在恒成立,求实数a的取值范围 (III)设,若在上的所有极值点按从小到大排成一列, 求证: