设椭圆的左,右焦点为,,(1,)为椭圆上一点,椭圆的长半轴长等于焦距,曲线C是以坐标原点为顶点,以为焦点的抛物线,自引直线交曲线C于P,Q两个不同的交点,点P关于轴的对称点记为M,设.(1)求椭圆方程和抛物线方程;(2)证明:;(3)若求|PQ|的取值范围
在正方体ABCD-A1B1C1D1中,E、F分别是CD、A1D1中点. (1)求证:AB1⊥BF;(2)求证:AE⊥BF;(3)棱CC1上是否存在点F,使BF⊥平面AEP,若存在,确定点P的位置;若不存在,说明理由.
在正三棱柱ABCA1B1C1中,点D是BC的中点,BC=BB1. (1)若P是CC1上任一点,求证:AP不可能与平面BCC1B1垂直;(2)试在棱CC1上找一点M,使MB⊥AB1.
在三棱锥SABC中,SA⊥平面ABC,SA=AB=AC=BC,点D是BC边的中点,点E是线段AD上一点,且AE=3DE,点M是线段SD上一点, (1)求证:BC⊥AM;(2)若AM⊥平面SBC,求证:EM∥平面ABS.
已知如图①所示,矩形纸片AA′A1′A1,点B、C、B1、C1分别为AA′、A1A1′的三等分点,将矩形纸片沿BB1、CC1折成如图②形状(正三棱柱),若面对角线AB1⊥BC1,求证:A1C⊥AB1.(图①)(图②)
如图,在正三棱柱ABCA1B1C1中,A1A=AC,D、E、F分别为线段AC、A1A、C1B的中点.(1)证明:EF∥平面ABC;(2)证明:C1E⊥平面BDE.