已知双曲线的离心率为2,焦点到渐近线的距离为.过的直线与双曲线C交于不同的两点、.(Ⅰ)求双曲线C的方程;(Ⅱ)当时,求直线的方程;(Ⅲ)设(为坐标原点),求的取值范围.
(本小题满分12分) 已知函数. (I)求函数f(x)的单调区间; (Ⅱ)若不等式对任意的都成立(其中e是自然对数的底数),求a的最大值。
(本小题满分12分) 已知定点,B是圆(C为圆心)上的动点,AB的垂直平分线与BC交于点E。 (1)求动点E的轨迹方程; (2)设直线与E的轨迹交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:OPQ面积的最大值及此时直线的方程。
(本小题满分12分) (理科)如图,四边形为矩形,四边形为梯形,平面平面,,,.(Ⅰ)若为中点,求证:平面; (Ⅱ)求平面与所成锐二面角的大小.
(本小题满分12分)
表1 甲系列
表2 乙系列