设定义在R上的函数满足:①对任意的实数,有②当. 数列满足. (1)求证:,并判断函数的单调性; (2)令是最接近的正整数,即, 设,求 ;
已知,其中,.(1)求的周期和单调递减区间;(2)在△ABC中,角A,B,C的对边分别为,,,求边长和的值().
设为奇函数,其图象在点处的切线与直线垂直,导函数的最小值为-12.(1)求的值;(2)求函数的单调递增区间,极大值和极小值,并求函数f(x)在上的最大值与最小值.
已知正项数列{}的前项和为,且,,成等差数列.(1)证明数列{}是等比数列;(2)若,求数列的前项和.
已知:,为常数)若,求的最小正周期;若在上的最大值与最小值之和为3,求的值.
设命题:函数在区间[-1,1]上单调递减;命题:函数的值域是.如果命题或为真命题,且为假命题,求的取值范围.