在边长是2的正方体-中,分别为的中点. 应用空间向量方法求 解下列问题. (1)求EF的长(2)证明:平面;(3)证明: 平面.
已知等比数列,公比为,,。(Ⅰ)求的通项公式;(Ⅱ)当,求证:。
已知为坐标原点,,.(Ⅰ)求的单调递增区间;(Ⅱ)若的定义域为,值域为[2,5],求的值。
已知数列{}、{}满足:。(Ⅰ)求;(Ⅱ)设,求数列的通项公式;(Ⅲ)设,不等式恒成立时,求实数的取值范围。
已知函数,其定义域为(),设。(Ⅰ)试确定的取值范围,使得函数在上为单调函数;(Ⅱ)试判断的大小并说明理由;(Ⅲ)求证:对于任意的,总存在,满足,并确定这样的的个数。
设为正实数,,,。(Ⅰ)如果,则是否存在以为三边长的三角形?请说明理由;(Ⅱ)对任意的正实数,试探索当存在以为三边长的三角形时的取值范围。