已知函数(为实数,,),(Ⅰ)若,且函数的值域为,求的表达式;(Ⅱ)在(Ⅰ)的条件下,当时,是单调函数,求实数的取值范围;(Ⅲ)设,,,且函数为偶函数,判断是否大于?
已知数列是等差数列,数列是公比大于零的等比数列,且,. (1)求数列和的通项公式; (2)记,求数列的前n项和.
在中,内角A,B,C的对边分别为a,b,c,且. (1)求角B的值; (2)若,,求的面积.
已知函数. (1)求函数的最小正周期及单调递减区间; (2)求函数在上的最小值.
设已知函数,. (1)当时,求函数的最大值的表达式. (2)是否存在实数,使得有且仅有3个不等实根,且它们成等差数列,若存在,求出所有的值,若不存在,说明理由.
已知抛物线的方程为,点在抛物线上. (1)求抛物线的方程; (2)过点作直线交抛物线于不同于的两点,,若直线,分别交直线于,两点,求最小时直线的方程.