(本小题满分16分)设R,m,n都是不为1的正数,函数(1)若m,n满足,请判断函数是否具有奇偶性. 如果具有,求出相应的t的值;如果不具有,请说明理由;(2)若,且,请判断函数的图象是否具有对称性. 如果具有,请求出对称轴方程或对称中心坐标;若不具有,请说明理由.
直线与圆交于、两点,记△的面积为(其中为坐标原点). (1)当,时,求的最大值; (2)当,时,求实数的值;
若,求函数的最大值和最小值;
如图5,在四棱锥中,底面为正方形,平面,,点是的中点. (1)求证://平面; (2)若四面体的体积为,求的长.
设函数. (Ⅰ)求函数的最小正周期; (Ⅱ)当时,求函数的最大值及取得最大值时的的值;
已知等差数列, (1)求的通项公式; (2)令,求数列的前项和;