设是椭圆的两点,,,且,椭圆离心率,短轴长为2,O为坐标原点。 (1)求椭圆方程; (2)若存在斜率为的直线AB过椭圆的焦点(为半焦距),求的值;(3)试问的面积是否为定值?若是,求出该定值;若不是,说明理由。
在中, (1)求AB的值。 (2)求的值。
已知中心在原点,焦点在轴上的椭圆的离心率为,且经过点,过点的直线与椭圆相交于不同的两点. (Ⅰ)求椭圆的方程; (Ⅱ)是否存直线,满足?若存在,求出直线的方程;若不存在,请说明理由.
已知函数,. (Ⅰ)若函数在处取得极值,试求的值,并求在点处的切线方程; (Ⅱ)设,若函数在上存在单调递增区间,求的取值范围.
数列的前项和记为, (Ⅰ)求的通项公式; (Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求.
设函数其中 (Ⅰ)求的单调区间; (Ⅱ) 讨论的极值.