如图,正方形ABCD的边长是2,M是AD的中点.点E从点A出发,沿AB运动到点B停止.连接EM并延长交射线CD于点F,过M作EF的垂线交射线BC于点G,连接EG、FG.(1)设AE=x时,△EGF面积为y.求y关于x的函数关系式,并填写自变量x的取值范围;(2)P是MG的中点,请直接写出点P运动路线的长.
(1)计算:;(2)化简:.
化简求值:,其中.
已知:如图,△ABC中,∠C=90°,D是AC的中点。求证:AB2+3BC2=4BD2。
如图,古塔直立地面上,塔的中心线OP与地面上的射线OA 成直角,为了测塔的大致高度,在地面上选取与点O相距50m的点A ,测得∠OAP,用1cm代表10m(即1∶1000的比例尺),画线段AO,再画射线AP、 OP,使∠PAO=30°,∠POA=90°,AP、OP相交于P,量PO 的长(精确到1mm),再按比例尺换算出古塔的高。
如图所示,作出△ABC关于直线l的对称三角形A'B'C'。