若数列{an}满足:a1=1,an+1=2an(n∈N*)则a5= ,前8项和S8=
设异面直线、成角,它们的公垂线段为且,线段AB的长为4,两端点A、B分别在、上移动,则AB中点P的轨迹是 。
已知正方体ABCD-A1B1C1D1的棱长为2,点E为棱AB的中点。求:D1E与平面BC1D所成角的大小(用余弦值表示)
有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。其中正确的命题是 。
将锐角A为60°,边长a的菱形ABCD沿对角线BD折成二面角,已知,则AC、BD之间的距离的最大值和最小值 .
水平桌面儿上放置着一个容积为V的密闭长方体玻璃容器ABCD—A1B1C1D1,其中装有V的水。(1)把容器一端慢慢提起,使容器的一条棱AD保持在桌面上,这个过程中水的形状始终是柱体;(2)在(1)中的运动过程中,水面始终是矩形;(3)把容器提离桌面,随意转动,水面始终过长方体内的一个定点;(4)在(3)中水与容器的接触面积始终不变。以上说法正确的是_____.