(本题满分14分)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (Ⅰ)设表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况; (Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少? (Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.
已知椭圆上的点到椭圆右焦点的最大距离为,离心率,直线过点与椭圆交于两点.(1)求椭圆的方程;(2)上是否存在点,使得当绕转到某一位置时,有成立?若存在,求出所有点的坐标与的方程;若不存在,说明理由.
已知函数在区间上为单调增函数,求的取值范围.
抛物线的焦点在轴正半轴上,过斜率为的直线和轴交于点,且(为坐标原点)的面积为,求抛物线的标准方程.
(本小题满分12分)设函数R,求函数在区间上的最小值.
已知双曲线的渐近线方程为,并且经过点,求双曲线的标准方程.