(本题满分14分)甲乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张. (Ⅰ)设表示甲乙抽到的牌的数字,(如甲抽到红桃2,乙抽到红桃3,记为(2,3))写出甲乙二人抽到的牌的所有情况; (Ⅱ)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少? (Ⅲ)甲乙约定,若甲抽到的牌的牌面数字比乙大,则甲胜;否则,乙胜,你认为此游戏是否公平?请说明理由.
如图,双曲线的中心在坐标原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.又已知该双曲线的离心率. (1)求证:,,依次成等差数列; (2)若F(,0),求直线AB在双曲线上所截得的弦CD的长度.
已知函数f(x)=x3+3ax-1的导函数f ′ (x),g(x)=f ′(x)-ax-3. (1)当a=-2时,求函数f(x)的单调区间; (2)若对满足-1≤a≤1的一切a的值,都有g(x)<0,求实数x的取值范围; (3)若x·g ′(x)+lnx>0对一切x≥2恒成立,求实数a的取值范围.
如图,四棱锥P-ABCD的底面为矩形,侧棱PD垂直于底面,PD=DC=2BC,E为棱PC上的点,且平面BDE⊥平面PBC. (1)求证:E为PC的中点; (2)求二面角A-BD-E的大小.
某工厂2010年第三季度生产的A,B,C,D四种型号的产品产量用条形图形表示如图,现用分层抽样的方法从中选取50件样品参加2011年4月份的一个展销会。 (1)A,B,C,D型号的产品各抽取多少件? (2)从50件样品随机地抽取2件,求这2件产品恰好是不同型号产品的概率。 (3)从A,C型号的样品中随机地抽取3件,用ξ表示抽取A型号的产品件数,求ξ的分布列和数学期望
已知△ABC的周长为6,角A,B,C所对的边a,b,c成等比数列 (1)求角B及边b的最大值; (2)设△ABC的面积为S,求S+最大值