(本小题满分12分)已知椭圆的中心在坐标原点,长轴长为,离心率,过右焦点与轴不垂直的直线交椭圆于,两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)在线段上是否存在点,使得以为邻边的平行四边形是菱形? 若存在,求出的取值范围;若不存在,请说明理由.
(本小题满分12分)如图,已知四棱锥的底面是菱形,对角线交于点,,,,底面,点满足. (1)当时,证明:. (2)若二面角的大小为,问:符合条件的点是否存在.若存在,求出的值.若不存在,说明理由.
设函数的值域为R; :不等式,对∈(-∞,-1)上恒成立,如果命题“”为真命题,命题“”为假命题,求实数的取值范围.
(本小题满分12分)已知关于的二次函数 (Ⅰ)设集合和,分别从集合,中随机取一个数作为和,求函数在区间上是增函数的概率. (Ⅱ)设点是区域内的随机点,求函数在区间上是增函数的概率.
(本小题满分12分)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,200),[220.240),[240,260),[260,280),[280,300)分组的频率分布直方图如图. (1)求月平均用电量的众数和中位数; (2)在月平均用电量为[220.240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[240.260)的用户中应抽取多少户?
(本小题满分10分)已知直线:,(不同时为0),:, (1)若且,求实数的值; (2)当且时,求直线与之间的距离