(本题满分15分)已知偶函数满足:当时,,当时,(1) 求当时,的表达式;(2) 若直线与函数的图象恰好有两个公共点,求实数的取值范围。(3) 试讨论当实数满足什么条件时,函数有4个零点且这4个零点从小到大依次成等差数列。
郑已知定点A(0,)(>0),直线 :交轴于点B,记过点A且与直线l1相切的圆的圆心为点C.(I)求动点C的轨迹E的方程;(Ⅱ)设倾斜角为的直线过点A,交轨迹E于两点 P、Q,交直线于点R.(1)若tan=1,且ΔPQB的面积为,求的值;(2)若∈[,],求|PR|·|QR|的最小值.
如图,正方形ABCD和四边形ACEF所在的平面互相垂直。EF//AC,AB=,CE=EF=1(Ⅰ)求证:AF//平面BDE;(Ⅱ)求证:CF⊥平面BDE;
(本小题满分12分)某食品厂为了检查甲乙两条自动包装流水线的生产情况,随即在这两条流水线上各抽取40件产品作为样本称出它们的重量(单位:克),重量值落在的产品为合格品,否则为不合格品.表1是甲流水线样本频数分布表,图1是乙流水线样本的频率分布直方图. 表1:(甲流水线样本频数分布表) 图1:(乙流水线样本频率分布直方图) (1)根据上表数据在答题卡上作出甲流水线样本的频率分布直方图;(2)若以频率作为概率,试估计从两条流水线分别任取1件产品,该产品恰好是合格品的概率分别是多少;(3)由以上统计数据完成下面列联表,并回答有多大的把握认为“产品的包装质量与两条自动包装流水线的选择有关”.
附:下面的临界值表供参考:
(参考公式:,其中)
(本小题满分12分) 已知向量,,.(1)若求向量与的夹角;(2)当时,求函数的最大值。
(本小题满分12分)如题(21)图,已知、为椭圆和双曲线的公共顶点,、分别为双曲线和椭圆上不同于、的动点,且.设、、、的斜率分别为、、、.(I)求证:;(II)求的值;(III)设、分别为双曲线和椭圆的右焦点,若,求的值.