请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题记分.(本小题满分10分)选修4—1:几何证明选讲如图,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(Ⅰ)求证:AD∥EC; (Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.
已知抛物线:的焦点为,直线过点且其倾斜角为,设直线与曲线相交于、两点,求以线段为直径的圆的标准方程.
袋中有2个红球,3个白球,摸出一个红球得5分,摸出一个白球得3分,现从中任意摸出2个球,求事件“所得分数不小于8分”的概率.
用解析法证明:
已知直线与的方程分别为,,直线平行于,直线与,的距离分别为,,且,求直线的方程.
已知过原点的一条直线与函数的图象交于,两点,分别过点,作轴的平行线与函数的图象交于,两点. (1)求证:点,和原点在同一条直线上; (2)当平行于轴时,求点的坐标.