足球比赛的记分规则为:胜一场得3分,平一场得1分,输一场得0分,一支足球队在某个赛季中共比赛14场,现已比赛8场,输了1场,共得17分,请问:(1)前8场比赛中,这支足球队共胜多少场?(2)这支足球队打满14场比赛,最高能得多少分?
如图,已知关于的一元二次函数()的图象与轴相交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求出一元二次函数的关系式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为.若,的面积为,求关于的函数关系式,并写出的取值范围;(3)在(2)的条件下,当点坐标是 时,为直角三角形.
如图,在△ABC中,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且AC=CF,∠CBF=∠CFB. (1)求证:直线BF是⊙O的切线;(2)若点D,点E分别是弧AB的三等分点,当AD=5时,求BF的长和扇形DOE的面积;(3)在(2)的条件下,如果以点C为圆心,r为半径的圆上总存在不同的两点到点O的距离为5,则r的取值范围为 .
已知:如图,在Rt△中,,.点为边上一点,且,.求△周长和.(结果保留根号)
某校为了深化课堂教学改革,现要配备一批A、B两种型号的小白板,经与销售商洽谈,搭成协议,购买一块A型小白板比一块B型小白板贵20元,且购5块A型小白板和4块B型小白板共需820元。(1)求分别购买一块A型、B型小白板各需多少元?(2)根据该校实际情况,需购A、B两种型号共60块,要求总价不超过5300元,且A型数量多于总数的,请通过计算,求出该校有几种购买方案?(3)在(2)的条件下,学校为了节约开支,至少需花多少钱采购?
已知:如图所示,为任意三角形,若将绕点顺时针旋转180° 得到.(1)试猜想与有何关系?说明理由;(2)请给添加一个条件,使旋转得到的四边形为矩形,并说明理由.