某商场购进一种单价为40元的篮球,如果以单价50元出售,那么每月可售出500个,根据销售经验,售价每提高1元,销售量相应减少10个。(1)假设销售单价提高x元,那么销售300个篮球所获得的利润是____________元;这种篮球每月的销售量是___________________个。(用含x的代数式表示)(2)8000元是否为每月销售这种篮球的最大利润?如果是,请说明理由;如果不是,请求出最大利润,此时篮球的售价应定为多少元?
已知实数a、b满足ab=1,a+b=2,求代数式a2b+ab2的值.
有足够多的长方形和正方形的卡片,如下图. (1)如果选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙).请画出这个长方形的草图,并运用拼图前后面积之间的关系说明这个长方形的代数意义.这个长方形的代数意义是 . (2)小明想用类似的方法解释多项式乘法,那么需用2号卡片张,3号卡片张.
我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例。如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律。例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等。 (1)根据上面的规律,写出的展开式。 (2)利用上面的规律计算:
a(a − 3) + (2 − a)(2 + a). 原式 =" a2" − 3a + 4 − a2 = −3a + 4. 类型三 规律题 1. (2011湖南益阳,16,8分)观察下列算式: ① 1 × 3 - 22 =" 3" - 4 = -1 ② 2 × 4 - 32 =" 8" - 9 = -1 ③ 3 × 5 - 42 =" 15" - 16 = -1 ④ …… (1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来; (3)你认为(2)中所写出的式子一定成立吗?并说明理由.
如图,抛物线()与轴相交于两点,点是抛物线的顶点,以为直径作圆交轴于两点,.用含的代数式表示圆的半径的长;连结,求线段的长;点是抛物线对称轴正半轴上的一点,且满足以点为圆心的圆与直线和圆都相切,求点的坐标.