(本小题满分12分)如图,正方形ADEF所在平面和等腰梯形所在平面ABCD垂直,已知BC=2AD=4,,(I)求证:面ABF;(II)求异面直线BE与AF所成的角;(III)求该几何体的表面积。
选修:几何证明选讲 如图,圆内接四边形的边与的延长线交于点,点在的延长线上. (Ⅰ)若,求的值; (Ⅱ)若,证明:.
已知函数(). (Ⅰ)讨论的单调性; (Ⅱ)若对任意恒成立,求实数的取值范围(为自然常数); (Ⅲ)求证:(,).
已知直线与椭圆相交于两点. (Ⅰ)若椭圆的离心率为,焦距为2,求线段的长; (Ⅱ)若向量与向量互相垂直(其中为坐标原点),当椭圆的离心率时,求椭圆的长轴长的最大值.
如图,已知矩形所在平面垂直于直角梯形所在平面于直线,且,且∥. (Ⅰ)设点为棱中点,求证:平面; (Ⅱ)线段上是否存在一点,使得直线与平面所成角的正弦值等于?若存在,试确定点的位置;若不存在,请说明理由.
甲、乙、丙三班进行知识竞赛,每两班比赛一场,共赛三场.每场比赛胜者得分,负者得分,没有平局,在每一场比赛中,甲班胜乙班的概率为,甲班胜丙班的概率为,乙班胜丙班的概率为. (Ⅰ)求甲班获第一名且丙班获第二名的概率; (Ⅱ)设在该次比赛中,甲班得分为,求的分布列和数学期望.