设二次函数的图像过原点,,的导函数为,且,(1)求函数,的解析式;(2)求的极小值;(3)是否存在实常数和,使得和若存在,求出和的值;若不存在,说明理由。
函数的最大值为3,其图像相邻两条对称轴之间的距离为.(1)求函数f(x)的解析式;(2)设,求的值.
已知数列中,前和(1)求证:数列是等差数列(2)求数列的通项公式(3)设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求的最小值,若不存在,试说明理由。
已知函数.(1)若函数在上是增函数,求实数的取值范围;(2)若函数在上的最小值为3,求实数的值.
如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数的图象,且点M到边OA距离为.(1)当时,求直路所在的直线方程;(2)当为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
在锐角△ABC中,角A、B、C的对边分别为a、b、c,且(1)求角;(2)若,求面积S的最大值.