( (本小题满分14分)已知函数 (1) 当时,求函数的最值;(2) 求函数的单调区间;(3) 试说明是否存在实数使的图象与无公共点.
如图1,在直角梯形中,,∥,,,将沿折起,使平面平面,得到几何体,如图2所示.(1)求证:平面;(2)求几何体的体积.
(本小题满分12分)已知向量,函数,若函数的图象的两个相邻对称中心的距离为.(Ⅰ)求函数的单调增区间;(Ⅱ)若将函数的图象先向左平移个单位,然后纵坐标不变,横坐标缩短为原来的倍,得到函数的图象,当时,求函数的值域.
极坐标系的极点在直角坐标系的原点,极轴与轴的正半轴重合,直线的参数方程为(为参数), 圆的极坐标方程为.(1)求直线的普通方程和圆的直角坐标方程;(2)若圆上的点到直线的最大距离为,求的值.
已知函数,在点处的切线方程为.(Ⅰ)求的解析式;(Ⅱ)求的单调区间;(Ⅲ)若在区间内,恒有成立,求的取值范围.
(本小题满分12分)已知椭圆C:过点,离心率为,点分别为其左右焦点.(1)求椭圆C的标准方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点,且?若存在,求出该圆的方程;若不存在,请说明理由.