(本小题满分12分)已知函数(I)讨论函数的单调性;(II)设.如果对任意,,求的取值范围。
(本小题满分14分) 在四棱锥中,底面是直角梯形,∥,,,平面平面. (Ⅰ)求证:平面; (Ⅱ)求平面和平面所成二面角(小于)的大小; (Ⅲ)在棱上是否存在点使得∥平面?若存在,求的值;若不存在,请说明理由.
(本小题满分13分) 为加强大学生实践、创新能力和团队精神的培养,促进高等教育教学改革,教育部门主办了全国大学生智能汽车竞赛. 该竞赛分为预赛和决赛两个阶段,参加决赛的队伍按照抽签方式决定出场顺序.通过预赛,选拔出甲、乙等五支队伍参加决赛. (Ⅰ)求决赛中甲、乙两支队伍恰好排在前两位的概率; (Ⅱ)若决赛中甲队和乙队之间间隔的队伍数记为,求的分布列和数学期望.
(本小题满分13分) 在中,角,,所对的边分别为,,, ,. (Ⅰ)求及的值;(Ⅱ)若,求的面积.
已知椭圆经过点,为坐标原点,平行于的直线在轴上的截距为. (1)当时,判断直线与椭圆的位置关系(写出结论,不需证明); (2)当时,为椭圆上的动点,求点到直线距离的最小值; (3)如图,当交椭圆于、两个不同点时,求证:直线、与轴始终围成一个等腰三角形.
如图,平面,四边形是矩形,,与平面所成角是,点是的中点,点在矩形的边上移动. (1)证明:无论点在边的何处,都有; (2)当等于何值时,二面角的大小为.