如图,在△ABC中,AD平分∠BAC. (1)若AC=BC,∠B︰∠C=2︰1,试写出图中的所有等腰三角形,并给予证明.(2)若ABBD=AC,求∠B︰∠C 的比值
如图,在正方形 ABCD 中,点 G 在边 BC 上(不与点 B , C 重合),连接 AG ,作 DE ⊥ AG 于点 E , BF ⊥ AG 于点 F ,设 BG BC = k .
(1)求证: AE = BF .
(2)连接 BE , DF ,设 ∠ EDF = α , ∠ EBF = β .求证: tan α = k tan β .
(3)设线段 AG 与对角线 BD 交于点 H , ΔAHD 和四边形 CDHG 的面积分别为 S 1 和 S 2 ,求 S 2 S 1 的最大值.
设二次函数 y = a x 2 + bx − ( a + b ) ( a , b 是常数, a ≠ 0 ) .
(1)判断该二次函数图象与 x 轴的交点的个数,说明理由.
(2)若该二次函数图象经过 A ( − 1 , 4 ) , B ( 0 , − 1 ) , C ( 1 , 1 ) 三个点中的其中两个点,求该二次函数的表达式.
(3)若 a + b < 0 ,点 P ( 2 , m ) ( m > 0 ) 在该二次函数图象上,求证: a > 0 .
如图,在 ΔABC 中, ∠ ACB = 90 ° ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连接 CD .
(1)若 ∠ A = 28 ° ,求 ∠ ACD 的度数.
(2)设 BC = a , AC = b .
①线段 AD 的长是方程 x 2 + 2 ax − b 2 = 0 的一个根吗?说明理由.
②若 AD = EC ,求 a b 的值.
设一次函数 y = kx + b ( k , b 是常数, k ≠ 0 ) 的图象过 A ( 1 , 3 ) , B ( − 1 , − 1 ) 两点.
(1)求该一次函数的表达式;
(2)若点 ( 2 a + 2 , a 2 ) 在该一次函数图象上,求 a 的值.
(3)已知点 C ( x 1 , y 1 ) 和点 D ( x 2 , y 2 ) 在该一次函数图象上,设 m = ( x 1 − x 2 ) ( y 1 − y 2 ) ,判断反比例函数 y = m + 1 x 的图象所在的象限,说明理由.
如图,在 ΔABC 中, AB = AC , AD 为 BC 边上的中线, DE ⊥ AB 于点 E .
(1)求证: ΔBDE ∽ ΔCAD .
(2)若 AB = 13 , BC = 10 ,求线段 DE 的长.